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PREFACE

It is well known that a calculus-of-variations approach to
solving the Bolza form of trajectory optimization problems usually yields
a nonlinear two-point boundary value problem in terms of the state and
Lagrange multiplier variables. Closed—form solutions for problems of
this type are difficult to obtain except for a few simple problems. As
a result, recent work in trajectory optimization has focused on numerical
procedures for obtaining solutions using high-speed digital computers.
Particular interest has centered on a group known as the second-order
methods.

One such method is the Successive Sweep Method (SSM). It uses
the generalized Riccati transformation technique to bypass a direct nu-
merical integration of the perturbation equations. The reasons such an
approach has much potential appeal are presented in this study; however,
because the SSM iterates on the control values over the interval of in-
terest, considerable computer storage is necessary even for problems of
small dimension. This storage is required to compute corrections to the
assumed control. Furthermore, the Eulerian control is not obtained upon
convergence.

This research develops a new second-order numerical optimization
method, the Modified Sweep Method (MSM). It requires very little computer
storage and provides the Eulerian control. In addition, the properties
and information contained in the Riccati transformation variables are
preserved.

Furthermore, this research also presents a new scheme for defi-
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ning classes of numerical optimization methods. The Successive Sweep
Method and the Modified Sweep Method are then discussed in terms of
differences arising because each falls into a different class. The Modi-
fied Sweep Method is subsequently compared numerically to the Method of
Perturbation Functions (MPF), both of which belong to the same class.

The author extends thanks to Mr. Walt Williamson of The Univer-
sity of Texas at Austin for many helpful discussions concerning the Apollo
reentry problem, to Mr. I. J. Kim, of Lockheed Electronics Company, Hous-
ton, for programming the plots, and both to Mr. Kim and Mr. Mike Frederick
of The University of Texas at Austin for helping with the data. He also
expresses gratitude to Dr. J. M. Lewallen of NASA/MSC and Professors A.M.
Bedford and E.J. Prouse of The University of Texas at Austin for serving
on the dissertation committee and helping with the manuscript. Special
thanks is due to Mr. E. L. Davis of NASA/MSC for making this research
possible, and for his personal interest and friendship which have pro-
vided constant inspiration.

The author expresses his indebtedness to Professor B. D. Tapley
of The University of Texas at Austin, who suggested this research and
provided many stimulating discussions while serving as committee super-
visor.

The author expresses deep appreciation to.his family for their

understanding and cooperation during the course of this research.

Daniel Colunga
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A MODIFIED SWEEP METHOD FOR

CONTROL OPTIMIZATION

Daniel Colunga, Ph.D.
The University of Texas at Austin, 1970

Supervising Professor: B. D. Tapley

A Modified Successive Sweep Method was devised which yields
Eulerian solutions to two-point boundary value problems of control opti-
mization. This was accomplished by requiring control satisfaction of
local optimality over the entire time interval of interest while simul-
taneously relaxing terminal transversality requirements on the Lagrange
multipliers.

The new method was tested successfully on several classes of
problems including optimizing the roll program for an Apollo-type three-
dimensional reentry trajectory so as to minimize a time integral of
spacecraft heating and acceleration.

This new method was shown to require significantly less computer
storage than the original Successive Sweep Method while requiring numeri-
cal integration of fewer variables. In addition, the method was shown to

possess rapid terminal convergence and a conjugate-point test capability.
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Subscripts:

For any variable W

W o= (W)

It

W(to) value of W at the initial time

=
1

£ W) W(tf) value of W at the final time

The Euclidean norm of the error in satisfying the term terminal

constraints is used as follows:

| |Error|| = il ||Zf|| + IIMfII + 9 l‘
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CHAPTER 1

INTRODUCTION

Optimal control of spacecraft trajectories requires obtaining
an optimal (maximum or minimum) wvalue for an appropriate scalar quantity.
This scalar quantity measures spacecraft performance and is called the
performance index. 1In addition, terminal conditions such as might be
specified for intercept or rendezvous problems must often be satisfied
simultaneously.

After the problem has been formulated mathematically, several
conceptual approaches are available to obtain the conditions required to
solve the optimization problem. Among the more usual approaches are the
calculus-of-variations, dynamic programming, and Pontryagin's Principle.

The calculus-of-variations is considered here because specific
optimal control problems can be considered as particular cases of the
more generalized Bolza problem of the classical calculus~of-variations.
The powerful results associated with this classical theory thus are avail-
able for attacking optimal control problems.

The calculus-of-variations approach yields a nonlinear two-point
boundary value problem for which closed-form solutions are usually not
possible. Sophisticated numerical procedures have been developed because
of the need to solve these problems. These procedures have become feas-
ible in the last decade because of the development of large-scale digital
computers,

This chapter introduces the definitions and terminology used



throughout the dissertation. A brief history of the development of the
numerical optimization methods is given also with interest centering on
the second-order variational methods. The class of trajectory optimi-
zation problems to be solved is stated, as well as the associated non-
linear two-point boundary value problem obtained from using a calculus-
of-variations approach.

Chapter II discusses (1) the second-order variation approach
used to solve the nonlinear two-point boundary value problem, (2) the
general set of perturbation equations for second-order methods, and (3)
techniques used to achieve an integration of these perturbatioﬁ equations.

Chapter III presents the Modified Sweep Method bésed on the
generalized Riccati transformation. Chapter IV develops the linear feed-
back control law for the Modified Sweep Method. The numerical results
obtained using this new method are discussed in Chapter V, with conclusions

and recommendations presented in Chapter VI.

1.1 Definition of Terms Used

The MSM (Modified Sweep Method) is obtained from the SSM (Suc~-
cessive Sweep Method) by requiring that the control satisfy both local
optimality and strengthened Legendre~Clebsch condition over the entire time
interval of interest. This optimal control is then eliminated from the
Hamiltonian for the p:oblem and the restructured Hamiltonian used to obtain
the nonlinear differential equations for both the state and Lagrange multi-
plier variables. As in the case of the SSM, the MSM then uses the
generalized Riccati transformation to solve the linearized two-point

boundary value problem in terms of the state and Lagrange multiplier per-



turbations. This is done while simultaneously relaxing the terminal trans-
versality requirements on the time-dependent Lagrange multipliers. It is
desirable to compare the proposed MSM to other existing numerical opti-
mization methods. For this reason, a study was made of several well-known
methods which appear in the literature. This author felt that these methods
were represéntative of the properties contained in the set of variational
methods for the numerical solution of optimization problems. It is empha-
sized that only a representative portion of the total number of existing
numerical methods has been used for this study. In addition, the second-
order methods intentionally have been selected more extensively than the
first-order methods. The generalizations made, therefore, pertain only to
those methods contained in Section 1.2 on the historical development of
numerical optimization methods.

This study of the selected group of existing methods revealed a
set of properties which can be employed to describe the characteristic
features for each method. These properties have been used to specify, ar-
bitrarily, twelve classes of numerical optimization methods. Each method

can then be identified as belonging to a particular class according to the

following properties:

(1) the ORDER (first or second) of the theory upon which the
method is based.

(2) the APPROACH (direct or indirect) used by the method to
compute the required corrections.

(3) the ITERATION PROCESS (interval, boundary or hybrid) used

by the method.



The following definitions are used:

Definition 1: Order of the Method

A method is described as first order if it is based only upon
the theory of the first variation for a real functional. If a method is
based upon the theory of the second variation for a real functional, it is

described as a second order method.

Definition 2: Approach of the Method

A method is said to take a direct approach if the required
corrections (state, control or Lagrange multipliers) are computed such
that the performance index for the augmented variational problem is
itself directly affected in some manner to expedite convergence. If a
method chooses to compute the required corrections based on the set of
first-order necessary conditions required for optimality with respect

to the control, then the method is said to take an indirect approach.

Definition 3: Iteration Process for the Method

A method is said to use an interval value iteration process if
the end result of a particular iteration is the computation of correc-
tions to the variables (state, control, or Lagrange multipliers) over the
entire time interval of interest. Methods which compute corrections to
these same variables at a boundary only are said to use a boundary value
iteration process. If a method combines both an interval and boundary
value iteration process, it is described as using a hybrid iteration pro-

cess.

Definition 4: Convergence for a Method

(a) Control Function Iteration Method. Given an arbitrary




numerical tolerance ¢, a control function iteration method is said to

have achieved convergence if

*T )
He Il + [l + a2 < e
where
D] & Max (abs[HL(x,uh,0)1} £ <t<t
b u(t) u o

(b) Boundary Value Iteration Method. Given a numerical toler-

ance €, a boundary value iteration method is said to have achieved con-

vergence if

| R A T I | R

The symbols H, Ef, Mf and Qf are defined in Section 1.4.
Using these definitions, Table I summarizes the twelve classes

of numerical optimization methods extracted from the methods chosen as

representative for the study. Reference numbers specify major studies in

each class while the acronyms (SSM, etc.) identify the particular class

for the three methods to be compared in detail.



TABLE I

CLASSES OF NUMERICAL OPTIMIZATION METHODS

CLASS ORDER APPROACH ITERATION PROCESS REFERENCES
1 1 Direct Hybrid
2 1 Direct Interval value 4,12
3 1 Direct Boundary value
4 1 Indirect Hybrid
5 1 Indirect Interval value
6 1 Indirect Boundary value
7 2 Direct Hybrid
8 2 Direct Interval value 19,26
9 2 Direct Boundary value 35
10 2 Indirect Hybrid 3,13
11 2 Indirect Interval value 23,27 (SSM)
12 2 Indirect Boundary value 10,11,16
(MSM ,MPF)

As shown in Table I, the class of second~order methods which
take a direct approach in computing the desired corrections and implement
a hybrid iteration process was not represented in the methods chosen for
the study. Furthermore, Classes 1,3,4,5 and 6, all first-order methods,
were also not represented. This can be attributed to the fact that second-

order methods were of primary interest in this study.



The similarities and differences between the three numerical
optimization methods (SSM, MSM and MPF) to be discussed are now obvious.
All three are second-order methods which use an indirect approach in
computing the required corrections for the state, control or Lagrange
multiplier variables. The 5SM falls into Class 11 because it uses an
interval iteration process. Both the MSM and MPF fall into Class 12
because each uses a boundary iteration process.

A historical development of the methods chosen for the study

is detailed now for reference purposes.

1.2 Historical Information

First-Order Methods. The first numerical procedure for solving

control optimization problems which generated active interest was devel-
oped independently by Kelley12 and Bryson and Denham". Their research
extended the concept of steepest descent developed earlier by Courant®.

The Class 2 method was based on the first-order variation of a scalar
functional, with a control function assumed for the time interval of in-
terest. Corrections to this control were then computed iteratively using
an ordinary gradient technique. Applications showed that the method was
easy to implement and tended to convergence with even gross initial control
estimates.

The method, however, possesses two undesirable features. First,
the convergence rate decreased asymptotically during the terminal stages
of iteration. Second, once convergence was achieved, the control obtained
was only within a numerical tolerance of the Eulerian control.

Due to the first undesirable feature, numerical procedures to

increase the convergence rate flourished. These were all first-order



methods and are not discussed in this research. Both features led to the
development of the second-order methods which sought to increase conver-
gence as well as provide the true Eulerian control.

Second-Order Methods. Jurovics and McIntyre11 solved the two-

point boundary value problem of trjaectory optimization by using the equa-
tions which are adjoint to the linearized Fuler-Lagrange equations. Their
method was called the Adjoint Method (Method of Adjoint Functions), and
extended the work of Goodman and Lance’ to allow for variable terminal
time. The Adjoint Method is a Class 12 method wherein an indirect approach
is used to compute the desired corrections while iterating on the initial
boundary values of the Lagrange multipliers.

Breakwell, Speyer, and Bryson3 developed a "second variation"
method (Class 10) to sclve control optimization problems. Kelley, Kopp,
and Moyer!3 also developed a "second variation" method similar to the
previous one. Jazwinskil® developed a modified adjoint method equivalent
to the second-variation method of Breakwell, Speyer, and Bryson3 by ex-
tending the method of Jurovics and McIntyrell. Jazwinski's method had
the specific advantage, however, of requiring considerably less storage.
Furthermore, it required less computer time in that fewer integrations of

an equivalent set of equations were necessary.

McGill and Kenneth?0 developed the Generalized Newton-Raphson
Operator Method for solving two-point boundary value problems. This method
falls into Class 11, which uses the indirect approach linked with an
interval value iteration process. A proof of quadratic convergence for
the method had previously been given by these same authors?!. This method's
major drawback was the laborious manner in which corrections to the final

time value were computed.



An alternate approach, the Modified Generalized Newton-Raphson
Method, using the same method was developed by Long17. To eliminate the
awkward handling of free final time, a change of independent variable was
used for the free-finagl-time corrections. Another method based on the
Newton-Raphson approach, but incorporating a better technique for compu-
ting the free~final-time corrections, is the Modified Quasilinearization
Method developed by Lewalleni®. Sylvester and Meyer3® have also used the
Newton-Raphson approach, calling it quasilinearization.

A method based on the theory of both the first and second vari-
ations was devised by Merriam2®. This is a Class 8 method in which a
direct approach is taken for computing corrections to the control functions
assumed throughout the time interval of interest. This particulér method
was instrumental in the development of the successive sweep method discus-
sed in the next paragraph.

McReynolds and Bryson?® introduced the successive sweep method
for solving optimal control problems. Although the method is a second-
order method, the Eulerian control requirement is relaxed. The method is
based on the generalized Riccati transformation and falls into Class 1l
(Table I). A similar method called successive approximation was developed
by Mitter2?. He also showed the formal equivalence of this method to
Newton's Method.

Lewallenl® also introduced the Method of Perturbation Functions
(MPF), based on previous work by Breakwell, gE_gl.,3 and Jazwinskil0. The
method falls into Class 12. Lastmanl“ has shown the equivalence of all
these methods to Newton's Method.

Sutherland and Bohn3% have recently developed a method which falls
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into Class 9, which uses a direct approach to compute boundary corrections
for the initial values of the multipliers.

Maynel® developed a second-order method which falls into Class 8
(Table I). However, a dynamic programming technique is used to attack the
optimization problem instead of a calculus-of-variations technique.

Jacobson® extended the Class 11 features into a new second-order
algorithm through use of a differential dynamic programming technique. His
method generalizes the successive sweep methods of McReynolds23 and
Mitter2”.

The development of the MSM completes the historical development
for the numerical optimization methods chosen.

As was mentioned previously, it is now desirable to compare the
MSM to both the SSM and the MPF. Toward this end, a general class of con-
trol optimization problems is first chosen. This class of problems is

presented in the next section.

1.3 Class of Control Optimization Problems to be Solved

Posed as a special form of the Bolza problem from the calculus-
of-variations (see Bliss!), the generél class of control optimization prob-
lems to be solved is stated as follows:

In the time interval to <t< tf , find an .m~vector of ppntrol
variables wu(t) to minimize the real functional,

t
f
J) = G(xf,tf) + J Q(x,u,t) dt 1

t
(o)
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subject to the n-vector of differential constraints,

x = f(x,u,t) (2)

while satisfying the p-vector of known initial conditionms

N(xo,to) = 0 (3)

and the gq-vector of desired terminal conditions

M(xf,tf) = 0 (4)

The control and state variables in the following discussion are
assumed to be defined on completely open regions and thus are not subject
to inequality constraints.

1.4 Associated Nonlinear Two-Point Boundary Value Problem

Proceeding in the usual calculus-of-variations manner for solving
the Bolza problem of control optimization stated in the previous section, an
augmented functional denoted as I is first formed. This augmented func-
tional has the property of being formally equivalent to the original func-
tional; it incorporates the désired auxiliary conditions through the use
of Lagrange multipliers. To form this augmented functional, the n-vector of
Lagrange multipliers A(t) and the p and q vectors of constant Lagrange
multipliers yu and v adjoin the desired auxiliéry conditions to the ori-

ginal functional as follows:

t
f a
I = J + uIN + oM + J AT(E - %) dt (5)

t
o
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For convenience of notation, this functional is rewritten as

t

f L]
I =P + ¥ + J @ - ATx%) dt (6)
t
)
where
P o= P(x_,v,t.) & G(x.,t.) + vM(x.,t.)
£2V0 f £2°f Xgobg
A T
vV o= T(XO9Usto) = H N(XO’tO)
H = H(x,u,x,t) = Q(x,u,t) + ATf(x,u,t)
and x = x(t) , u = u(t) , A o= Aa(t)

The scalar H 1is the variational Hamiltonian for this class of problems.

Necessary Conditions. The set of first-order necessary condi-

tions which must be satisfied by the extremal control for the augmented
functional of the type above is obtained by requiring the first variation
of this functional to vanish. These conditions are well documented in the
literature (for example Bliss!, HestenesS8, Pontryagin30, et al., Tapley and

Lewallen38). In summary, these conditions are

X - Hi(x,u,l,t) = 0 )
L] T _
t, Sttty At H (x,u,2,t) = 0 (8)
Hl(x,u,A,t) = 0 e
L u sty
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[ T A T
Zo = (Vx + A )t = 0 (10)
o}
t = t 1 N(xo,to) = 0 (11)
o & (Y, - H) = 0 (12)
o t t
\ (o]
( T A T
T =2 -
£ (By - A )tf = 0 (13)
t = t { M(x_,t_.) = 0.
f £2°F ' (14)
o, & @ +m) = o0 (15)
| f t te

Equations (7) through (9) constitute 2ntm Euler-Lagrange equations for
this class of problems. Equations (11) and (14) are the p+q specified
initial and final values of the problem state variables. The remaining
equations form the 2n+2 set of classical transversality conditions from
the calculus-of-variations.

The control optimization problem thus is ?osed as a nonlinear
two—point boundéry value problem for the 2n+m variables =x(t), u(t),
and A(t) and the pt+q+2 parameters u, v, tos and te in terms of
the 2n differential equations (7) and (8), the m algebraic equations

(9), and the 2nt+pt+q+2 conditions in equations (10) through (15).
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It is assumed that the initial time tO and n values of the

initial state x(to) = §o are specified. Equations (10) and (12) are
then identically satisfied and therefore disregarded in subsequent dis-

cussions.

Sufficiency Conditions. To ensure that the control satisfying

these first-order necessary conditions does indeed generate a weak mini-
mizing solution, the second-order variation of the augmented functional
I(u) must be positive everywhere in the interval of interest when it is
evaluated along an extremal trajectory (Gelfand and Fomin®). This re-

quirement leads to the following additional set of second-order conditions:

1. Strengthened Legendre—-Clebsch Condition

The strengthened Legendre-Clebsch condition must be satis-
fied everywhere in the interval of interest. Specifically,

for any arbitrary change in control &u(t) ,
T
SuH Su >0 (16)
uu
is required.

2. Jacobi (Mayer) Conjugate Point Condition

The Jacobi (Mayer) conjugate point condition must be satis-
fied everywhere in the interval of interest. This requires
that no two points exist in the interval'Ato Sttt which
are conjugate to one another.
The following restrictions on the definitions presented in Sec—
tion I are subsequently assumed in this research: interval iteration

corresponds to control function iteration and boundary iteration corres-—

ponds to Lagrange multiplier iteration.



CHAPTER 2
THE PERTURBATION EQUATIONS

The second-order variational methods seek to solve the nonlinear
twé—point boundary value problem associated with trajectory optimization
by solving an equivalent linearized problem in terms of perturbations in
the problem variables. The six classes of second-order methods are dis-
tinguished by approach and <teration process. Furthermore, each method
for a given class is distinguished by the technique used to perform the
numerical integration of the perturbation equations which are obtained
from a first-order perturbation of the Euler-Lagrange equations, viz.,
Equations (7) through (9). These perturbation equations can assume one of
two forms with each form patterned by the iteration process selected for a
given method.

As in the case of the SSM (Successive Sweep Method), if a con-
trol function iteration process is used, a "PE" scheme is used to obtain
the perturbation equations. The acronym "PE" designates the following
procedure: Perturb the Euler-Lagrange equations and then Eliminate the
control perturbations. If a Lagrange multiplier boundary value iteration
process is used, an "EP" scheme is used to obtain the perturbation equa-
tions. The acronym "EP" similarly designates the following procedure:
Eliminate the optimal control and then Perturb theAresulting Euler-Lagrange
equations. These two schemes for generating the perturbation equations

for second~order methods are detailed below.

2.1 The PE Scheme

The PE Scheme is associated with control function iteration

15
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schemes such as the SSM. It proceeds by first perturbing the first-
order necessary conditions for stationary control. Then the perturbations
in the control are eliminated from the perturbed Euler-Lagrange equations
for the state and Lagrange multipliers and the appropriate transversality
conditions. This scheme tacitly assumes that the matrix Huu is nonsin-
gular everywhere in the time interval of interest. The set of perturba-
tion equations associated with this scheme is outlined in Appendix A and

are summarized here as

§x A B x v
= +
: T
SA -C -A SA -w a7)
where
A = -H. Hm + H
AU uu ux Ax
-1
B = HAuHuuHuA
-1
C = -H HH + H
XU uu ux XX
v = H H_lSHT
Auuu u
w = H H LlsH-
¥u uu u

and H = H(x,A,u,t) while the Hamiltonian partials Hku’ qu, etc., are
evaluated on the known trajectory. The known trajectory is called a nomi-
nal (or reference) trajectory.

Note that for this scheme, the system of perturbation equations

assumes the form of a set of inhomogeneous first-order linear differential

equations with time-dependent coefficient matrices.



2.2 The EP Scheme

The EP Scheme is used by the boundary value iteration methods.

It proceeds by first using the control optimality condition HE = 0 and
the strengthened Legendre~Clebsch condition 6uTHuu Su > 0 to eliminate
the control from the Euler-Lagrange equations for the state and Lagrange
multipliers, as well as the appropriate transversality conditions. The

revised set of equations are perturbed then to obtain the followihg homo~

geneous set of first-order linear differential equations.

6x X B 8x
8k < -AY |ex (18)

where

A = Hkx

B = HAA

¢ =

XX
~ %
H = H(x(t), ACt), u(x,A,t),t]
. T

and ﬁ(x,A,t) is the control obtained using the conditions that Hu = 0

and Huu > 0, It is important to note that this scheme involves the as-
sumption that the Hamiltonian H for the particular problem is structured
such that HE = 0 and Huu > 0 can be used to obtain the explicit rela-
tion z(x,A,t). Implicitly, such a relation is assured if Hz =0 and
H > 0 ; however, such an explicit relation may be impossible to obtain

uu

for some problems.
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2.3 Integrating the Set of Perturbation Equations

It has been pointed out previously that second-order methods
within a given class differ only in the technique that is used to inte-
grate the set of perturbation equations. The two techniques presently
available for accomplishing this integrating are detailed below.

Explicit Integration. Methods using this technique choose to

integrate directly the perturbation equations to obtain the perturbed
values over the interval of interest. Some investigators have found (see
for example the work of Merriam26) that these methods suffer from numer-
ical instabilities. 1Instability here is used in the sense that small
errors in numerical precision will become exponentially very large over a
long interval of numerical integration. The nature of these instabilities
is associated with the numerical integration for coupled systems of linear
differential equations which have split boundary conditions and admit both
increasing and decreasing exponential solutions.

Implicit Integration. Methods which presently use this technique

are based upon a transformation process such as the generalized Riccati
transformation. The technique consists of bypassing direct integration of
the perturbation equations, and integrating a set of auxiliary variables.
These in turn can be used to compute the perturbed values for the variables
in the perturbation equations. Several advantages are claimed for this
technique. First, the differential equations for the new auxiliary vari-
ables have been reported to be more stable numerically than the original
perturbation equations. Second, these auxiliary variables contain addi-
tional intrinsic information about the optimal trajectory for the problem

being solved.
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A strong case concerning increased numerical stability in first-
order linear two-point boundary value problems has been made by Rybicki
and Usher3!. However, work by Williamson3? and this author has revealed
that problems which have large differences in sign and magnitude for the
eigenvalues of the coefficient matrix in the linear system of equations do
not behave well numerically with the generalized Riccati transformation
technique. This author's opinion is that a valid generalized statement is
yet to be made concerning the numerical stability properties of the Riccati
transformation technique.

That the auxiliary variables could contain additional intrinsic
information certainly proves to be true. The earlier methods lacked in
one respect: after convergence had been achieved, they required that post-
convergence procedures be used to test the Legendre-Clebsch condition and/
or the Jacobi-Mayer conjugate point condition. Those methods which used
the "EP" Scheme to generate the set of perturbation equations automatically
took the Legendre-Clebsch condition into account when eliminating the con-
trol from the set of Euler-Lagrange equations. However, the Jacobi-Mayer
conjugate point condition still must be tested. This condition was often
ignored and the converged solution was assumed to be a local optimum.

However, using the generalizéd Riccati transformation technique
on the perturbation equations provides the advantage of additional infor-
mation for the current reference trajectory. Information is contained
among these auxiliary Riccati variables for testing the Jacobi-Mayer con-
jugate point and abnormality conditions from the calculus-of-variations
(McReynolds?3). It is well-known that the existence of a conjugate point

precludes a trajectory from being optimal. The existence of such a con-
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jugate point can be automatically detected continuously during the back-
ward sweep process. This is accomplished by use of the fact that the
matrix solution to the Riccati differential equation becomes»unbounded at
a conjugate point.

On the other hand, the abnormality condition is equivalent to a
certain matrix of these auxiliary Riccati transrormation variables be-
coming singular at the initial time. This information is important be-
cause such a condition is tantamount to the inability in making correct-
ions for values of the terminal constraints. This abnormality condition
occurs for the Bolza problem if the boundary conditions at the final time
are not linearly independent (McReynolds?3).

This leads to speculation concerning additional information
about the reference trajectory which might be contained in the other Ric-
catl transformation variables, either individually or in some combined
form. To this author's knowledge, little work has been done in attempting

to extract such additional information.

2.4 The Generalized Riccati Transformation Technique

The generalized Riccati transformation is a transformation which
changes the original two~point boundary value problem in terms of the
coupled linear system of differential equations to an initial-value prob-
lem having uncoupled variables and boundary conditions. This initial
value problem is now stated in terms of n original problem variables,
and in the general case, a total of [n(n+l) + q(q+1)] /2 + {(nxq) +

3(ntq) + 2] auxiliary Riccati variables where n is the number of state

variables and q 1is the number of terminal constraint. Since the coupled
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system of perturbation equations is integrated implicitly by integrating
these auxiliary variables, it was expected that the differential equations
for the auxiliary variables would be numerically more stable than the ori-
ginal equations. Furthermore, Breakwell and Ho? have shown agreement with
McReynolds23 in that the conjugate point condition is related directly to
the boundedness of an (nxn) matrix of Riccati variables which must satisfy

a matrix version of the scalar Riccati equation over the time interval of

interest.

-

This transformation approach proceeds to solve the original non-
linear two-point boundary value control optimization problem in the fol-
lowing manner. A solution to the original nonlinear problem is assumed,
and the corresponding terminal conditions are obtained. In general, these
conditions are not satisfied to within the specified error tolerances.
Desired changes, in these terminal conditions are specified, and the gen-
eralized Riccati transformation is used then to generate a linearized field
of solutions about this assumed solution. The transformation allows the
specified changes in thé set of terminal conditions to be mapped back to
the initial time, when the particular member of the field that also satis-
fies the initial conditions is selected. A new solution to the original
nonlinear two-point boundary value problem is then computed using the lin-
earized corrections, which are obtained through use of the auxiliary Ric~-
cati variables. As before, the new solution does not satisfy the desired
terminal conditions exactly due to the linearity assumptions. However, the
process can be applied iteratively until the desired terminal conditions
are satisfied to within a suitable error tolerance.

Historical Background. A Riccati transformation technique was

first used by Gelfand and Fomin® in their successive sweep procedure of
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solving two-point boundary value problems for linear inhomogeneous systems
of second-order differential equations. The same transformation was gen-
eralized and discussed for systems of first—-order equations by Rybicki and
Us‘her.él McReynolds?3>2% and Mitter?? used the successive sweep method
with the generalized Riccati transformation tecﬁnique to solve the non-
linear two-point boundary value problem of control optimization. Schley

and Lee3? have developed a Newton-Raphson method which uses the Riccati

transformation technique. Speyer and Byrson31+ have extended the concept
of the Riccati variables for the case when some of these variables become
unbounded. Narha and Berry?® and Omicioli?® have applied the successive
sweep mgthod of McReynolds to the shaping of optimal finite-thrust orbit
transfer trajectories for which the control function is characterized by
discontinuities. McGregor22 has used the same method but has introduced
mddifications to handle problems with inequality constraints which contain
the control explicitly. ™ost recently, Longmuir and Bohnl® have shown
how this technique can be used with any second-order method.

Analytical Development. The generalized Riccati transfqrmation

for the linearized control optimization problem can be writtem in matrix

form as

Sa(t) 8x(t)
M, = R(t) {dv + p(t) (19)
g | dt,
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where de, de, dv, and dtf are constants for a particular iteration

and

[ K D 2 ) [ n )
R 4 E F g p A& z
YT ZT s ¢

where K, E, yT respectively map given state perturbations &x(t) into
changes in the multipliers &A(t), terminal state dissatisfactions de s

and terminal Hamiltonian transversality dissatisfaction de and

K(t) dis an nxn symmetric matrix
E(t) is a qxn matrix

yv(t) dis an n-vector

Also, D, F, zT ,» respectively map changes in the multipliers dv into
changes in the multipliers 6A(t) , terminal state dissatisfactions de,

and Hamiltonian terminal dissatisfaction dQ and

f 3
D(t) 1is an nxq matrix
F(t) is a qxq symmetric matrix

z(t) is a g-vector

The scalars &, g and s respectively map changes in the final
time dtf into changes in the multipliers &A(t), terminal state dissat-

isfactions de and the dissatisfaction in the terminal Hamiltonian, de.



24

The quantities n, ¢ and ¢ respectively map changes in termi-
nal local optimality dissatisfaction or terminal transversality dissatis-

factions by the multipliers into changes &A(t), de, and de .

Differentiating the generalized Riccati transformation (Eq. 19)

with respect to time gives

\ (o2 )

[ 52 ) (5x 8x
o |= R lav| + R0 |+ o (20)
0 at 0

\ / \ fa \ 7

Expanding the middle term on the right and transposing to the left yields

r A

(1 -K ) 6x
n *
8A . .
0 -E . = R {dv + 9 (21)
§x
T
0 -y dtf
L A L J

Using the perturbation equations, Equations (17), to eliminate 87 and

6§ leads to the following expression

rIn -K ) 8x
—AT ~C||6A -w .
0 -E | { + b = R |dv | + p (22)
B Alléx v
T
0 v dtf
\ J L J
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Now

(23)

Using the first row of the Riccati transformation, Equation (19), the

following relation can be readily obtained.

()

8x
Sx I 0 0 0
n
= dv | + (24)
S K D L n
Ldtf)

Substituting Equations (23) and (24) back into Equation (22) gives

r i N
In -K . §x
-C -A I 0 0 0 -w
0 -k 1 " dv |+ + )
A B K D 2 n v
T
0 -y dtf
( J
\ /
§x
= Rildv | + o (25)
dt



Multiplying and collecting. terms for arbitrary dx, dv and dt

the following equations must hold

R o= -shyr
5 = -STr
where
( 3
A In 0 0
S = T
K E y
( )
A I 0 0
T 2 n
K D 2
\ J
3
, (c AT
W =
LA B
( A
ATn + w
. A
and r =
Bh + w
\ J

26

f 2

(26)

(27)

Performing the matrix multiplications yields the familiar set of equa-

tions for the Riccati variables.

| K D L
d
at E F g =
T T
\ Y 2 s

( I

T
(A" +KB) K+ KA+ C | (AT +RB) D

-— E(A + BK) | EBD

yT(A + BK) | yTBD |

AT + kB)2

(28)
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+ KB)n + (Kv + w)N

FT |l = - E(Bn + wv) (29)

¢ yT(Bn + V)

From Equation (28), the following rates of change for the Ric-
cati variables are found to be equal: ET(t) = ﬁ(t), §(t) = 3(t) and
é(t) = é(t). If, then, at the terminal boundary ET(tf) = D(tf), y(tf) =
l(tf) and z(tf) = g(tf), the following will be true: ET(t) = D(t),

y(t) = 2(t) and ’z(t) = g(t). This means not only that the matrix of
Riccati variables R(t) given in Equation (19) is symmetric but also that

Equation (26) itself is also symmetric. In this case,

R = »“STWS (30)
where S§ and W are defined on page 26.

Terminal Boundary Conditions. The derivations of the general-

'ized set of terminal boundary conditions for the Riccati variables are
presented in Appendix B. In summary, these boundary conditions are ob-

tained from

[ Y (5% ) ()
Skf (Pxx)f M: o fo Tl
X
f
aM = ¥
c M 0 M |dv |+ [0 | (3D
de Ty M+ +
\ £ J \af T2 £ T3 Bf Tl'b Ldth \TSA
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The boundary conditions thus are

( \
K(tf) D(tf) l(tf)
R(tf) = E(tf) F(tf) g(tf)
T T
Ly (tf) z (tf) s(tf{
( T )
(Pxx)f Mx 0Lf
f
= Mx 0 Mf (32)
f
T ° T
+
kocf T2 Mf + '1'3 Bf + T'*lu
1 \ ()
n(tf) T
and plt) = |o(edf = |0 (33)
t
L¢( f)J s
where
T
P
a & C——X— + HT)
£ t X ¢
f
A D ([DP
Be ~ Dt (Dt Q)tf
A
Tl = de
A -1, ;
Tz - ( HuHuu(Hux * HuAPxx)]tf

L>

~HH H M
3 uuu.ukxtf



A _|.T Df .1
Tq - [zf Dt * HuduuHuAathf
— T ° —_
and T 2 H H lGH' - (xT - HH 1H ) 4%
5 uuu u u uu ul £ tf

Interval Value Process. Methods using this process start by

assuming a control function over the time interval of interest. In
general then, Hz(t) # 0. For such methods, the Lagrange multipliers
can be made to satisfy the transversality conditions identically; i.e.,
Zf = 0. The Successive Sweep Method is an example of a control function

iteration process. The terminal boundary conditions for the Riccati

variables are then obtained from

29

fon ) ( T (ro ) (A )
¥ (Pxx)f M o ) 8x, 0
f
.| = | M 0 M dv 0 (34)
£ Xe f
T o T
dQ o, + + T B. + T dt T
\ f) L f Tz f 3 f L"J \ fJ L 5)
where
r = [-HE Y@ _ +H.P )
2 u uu ux ul xx tf
T = (-H H iy MT]
3 u uu uA X
t
f
r = [-BE Y o
Y u uu uAr f te
and T = [H H~16HT)
5 uuu u tf



30
Note that the terminal matrix R(tf) of Riccati variables is
symmetric only when the control function satisfies the local optimality
condition that Hz(gf) = 0. This same conclusion has been drawn by
2

McG'regor2 . However, this contradicts the results presented by licRevnolds

and Bryson?® and Mitter?’. This argument needs to be resolved.

Boundary Value Process. These methods assumed that Hi(t) =0,
where tO <t j tf + In this case, initial values are guessed for the
-Lagrange multipliers, and subsequent corrections are computed iteratively.

In general then, Zf # 0: likewise, de # 0. The terminal boundary

conditions in this case are obtained as

( r T ([ 3 ( 3
I -
I (P, fo o X dz
- i N
dM, fo 0 £ |dv 0 (35)
T - T DE||dt -T
4% % £ P EEDe) | f) (6%

Note then that there is a basic difference in philosophy between a control
function and a boundary value iteration process. In the first case, the
optimality condition that HE = 0 is relaxed at each point in the inter-

val to ensure satisfaction of the transversality condition Z_ = 0 by

f

the Lagrange multipliers. In the second case, the optimality condition

Hu = 0 1is satisfied at each point in the interval while the terminal

transversality Zf = 0 dis relaxed on the multipliers.



CHAPTER 3

THE MODIFIED SWEEP METHOD

Merriam?®

and Mitter?” have pointed out that boundary-condition
iteration methods have certain programming advantages; viz., computer

logic is relatively simple, and programming storage requirements are

small, Furthermore, accurate trajectories are obtained in problems where
these methods are successful. Experience has shown that such methods have
one main disadvantage, viz., the numerical instability mentioned previously.
The nature of this instability has been discussed by several researchers,

31 Since the Riccati transformation tech-

among them Rybicki and Usher.
nique attempts to circumvent this problem by dealing with new uncoupled
variables, this approach enhances the desirable features already known

about boundary iteration schemes.

3.1 Differential Equations

For the modified sweep method, it is assumed that the Euler-
Lagrange equations are satisfied over the time interval of interest. Fur-
thermore, the optimality condition that HE = () 1is assumed to yield an

explicit expression for the control in terms of the other variables. The

Legendre-Clebsch condition is then used to yield the extremal cqntrol
*
u = u(x,),t) - (36)

This expression can now be used to eliminate the control from the original
nonlinear Euler-Lagrange equations for x and X as well as from the
appropriate transversality conditions. The set of first-order necessary

conditions can now be rewritten as

31
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X - H (x,0,t) = 0 (37)
t, St St A
A+ Hx(x,k,t) = 0 (38)
t o=t { N(x_,t) = 0 (39)
T T
tpo= (® -2 =0 (40)
to= ot o M(xf,tf) = 0 (41)
~— A ~
Q; = (Pt +H) = 0 (42)

Equations (37) and (38) are 2n equations for the 2n unknowns x(t)

and A(t). Equations (39) through (42) are 2n+q+l conditions for the

2n  unknowns x(t), A(t), and the q+1 unknown parameters v and te.
These equations constitute the familiar nonlinear two-point boundary value
problem. A first-order perturbation of the nonlinear Euler-Lagrange equa-
tions is now considered. This yields the following homogeneous linear

system of equations (see Section 2.2).

§x H i 8x
= (43)

As was mentioned on page 27, the differential equation for the
ntq+l matrix of Riccati variables, R(t), will be symmetric if the terminal
boundary values are such that R(tf) = Ri(tf). In the next section it
is shown that R(tf) will always be symmetric for the MSM. This
reason, along with the fact that an EP scheme is used by the MSM to obtain
the perturbation equations given'in Equation (18), give the following dif-

ferential equations for the MSM Riccati variables:
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R = -sTus (44)
. T
p = =8r 45)
where
g = I, 0 o
K 2
W A ?xx . ?xk
HAx A
A Hxx
r = . n
H)\)\
3.2 Boundary Conditions
Boundary conditions for these equations are obtained by a first-
order perturbation of equations (39) and (40)
Gx(to) = 6xo (46)
82 = (P ).6x.+M dv + a.dt, - dT
£ xx’f f X £9 ¢ £ (47)

£

Equations (43) represent 2n equations for the 2n unkﬁowns 8x(t) and
6A(t). Furthermore, equations (46) and (47) give 2n split-boundary con-
ditions for these variables in terms of the 2n known parameters Gxo

and GAf plus the g+l additional unknown parameters dv and dtf. The
required additional g+l conditions are obtained by also performing a
first-order perturbation of equations (41) and (42). It is shown in

Appendix B that this procedure yields
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de = fosx + Mfdtf (48)

8. = aWx + Midv + (B 4+ 1) dt. + 1 :

£ £ “f AL S (49)
where

T - _yr Df

BT f Dt

«T

and Ts = =X de

In matrix form, these boundary conditions can be summarized as

( (5% ) (eqy )
GAEW (Pxx)f fo o ) 6% az
a._| = |M 0 M av |+ | o (50)
f xf f
= T .T
dq o B, + 1 )||dt T
\ f \ f f f L FARN f/ L 5 P,

Note that this coefficient matrix is symmetric. Furthermore, if n values
of the state are specified at tf, Zf = de = 0, For this case, the ter-

minal boundary conditions reduce to the homogeneous form

r 3 ( T \N \
Skf (Pxx)f Mkf ap }5xf
M| = M 0 Mei|dv (51)
f
- T T
\deJ Laf £ Bf‘Ldtf‘




To summarize, Equations (43), (46), and (50) constitute the linear first-

order, two-point boundary value problem for the 2n functions Sx(t) ,

§A(t), and the q+1 parameters dv and dtf in terms of the 2n+q+l
specifiable parameters 6§o s ka ’ de , and dﬁf. The computational

procedure followed by the MSM will now be outlined.

3.3 Computational Algorithm

The modified sweep method can be implemented as follows:

Step 1 - Assume n+qt+l values for A(to) , Vv and tf .
Step 2 - Integrate the nonlinear Euler-Lagrange Equations (37) and (38)

forward from to to tf, viz.,

~T
X = H)(X’A’t)

>e
#

~T
—HX(X,A,C)

Step 3 - Test the error norm

IIError||

_2
| Hizgll+ 1)+ 3 |

If this criterion is satisfied, exit; otherwise, continue to

the next step.

35



Set. the terminal boundary conditions for the Riccati vari-

36

Step &4 -
ables
R(tg)  D(Ep) z(tf)W
= ot E(t) g(t.)
R(tf) = £ £ £
2Tt gT(t ) s(t)
L £ f £7)
(p ME a )
XX x
= | 0 M (52)
X
T - yT Df
La M 8 z:f Dt th
n(t,) ~dZg
= = 0
p(ty) t(ty) (53)
*T
(te) -x dr
A £ te
Step 5 - Integrate the Riccati variables backward from the final to
the initial time using the differential equations
R = -sus
5 = —STr
Step 6 - Compute the wntqtl corrections &} , dv and dt ‘using

the generalized Riccati transformation (Equation 19), eval-

uated at the initial time.

These corrections are



-1 T, - -1
& = (F-gs gD ( (@M - ©) s (aR - ¢)
o oo
- (DT - gs—llT) 8x )t
(o}

dt

it

-1 T T
sto( (de - ¢) =g dv —276x )to

and

6n, = (®Sx + Ddv+2dt.+n ),

° o)
“where it has been assumed that
: %
de = ~g Mf
. Q
dﬂf = -c £
%
0 < e <1
Step 7 - Repeat from Step 2 using the new values
Wy = Aty + s
o o o
vi+1 = vl 4+ dv
i+1 !
tf = tf + dtf

3.4 Computational Advantages

The computational advantages of the MSM over the SSM are
that it has to integrate ntq less variables and requires considerably
less storage than the SSM. The exact comparisons are shown 'in Tables

IT and III. Table II shows the number of variables which must be inte-

37
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grated by each method in forward and backward directions. Table III
shows the storage requirements for each method. Only 3n + 2(q+l) quan-
tities need to be stored in the MSM case. For the SSM, however,
M(n(q+3)+m+n(n+1)/2) quantities have to be stored where M 1is the total
number of points in the integration interval. A quick check for a
typical reentry problem with M = 1,000, n=6, q=3, and m= 1
shows the MSM requires storage of 26 quantities while the SSM must
store 58,000 quantities,

It is speculated that use of the SSM for large complex prob-
lems such as the Apollo 3-D reentry will require fixed step-size integra-
tion routines with a large enough step-size to remain within the computer
storage limitations. Furthermore, the large step size may lead to unsat-

isfactory numerical accuracy.
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TABLE II

MSM AND SSM VARIABLES TO BE NUMERICALLY INTEGRATED

STANDARD SWEEP METHOD

MODIFIED SWEEP METHOD

Forward: X -n Forward: X - n
Backward: A-n A-n
K - Bﬁ%ill Backward: K - Ei%ill
D - nxq D - nxq
£ -n £ ~-n
n-n n-n
F - ﬂi%ill F ~ ﬂﬁ%ill
g~-4q g~q
£-4q z-4q
s -1 s -1
b -1 ¢ -1
Yy-n
z-4q
Totals: Totals:
n(q+5) + (3q+2) n(q+s) + (2q+2)
+ —;— (n(at+l) + q(q+l)) + % (n(n+1) + q(q+i))

Difference: (ntq) 1less variables

Note: 1If all values of the term—
inal state are constrained, i.e.,
if q=mn, themnm n=0, ¢=0,
¢ = 0 and the difference increases

to 2(n+q)+1 less variables.
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TABLE 111
COMPUTER STORAGE REQUIREMENTS

STANDARD SWEEP METHOD

At every point in the integration
interval, the following values

must be stored:

x(t) : n
u(t)

a(t) : n
. n(n+l)

=

K(t)
D(t) : nxq

2(t) ¢ n

MODIFIED SWEEP METHOD

At the initial and final points only,

the following values must be stored:

X =n
o

A -1
o

v —q
te - 1
Zf -n

Mf -q

Qf -1

Let M = total number of points in

the integration, then
M [n(q+3) +m + Ei%iilj

quantities have to be stored. A

typical reentry problem has

M = Order(1,000), n =6, q = 3,

and m= 1.

Thus, 58,000 quantities must be
stored over the integration

interval.

Only 3nt+2(q+l) quantities need to
be stored from iteration to iter-

ation.

Compare 26 quantities with 58,000
for the Apollo reentry problem.



CHAPTER 4

THE MODIFIED SWEEP METHOD GUIDANCE SCHEME

Initial conditions for dynamical processes are difficult to
control in actual problems. Errors often occur which may be due to in-
ternal mechanical causes such as premature cutoff by a thrusting rocket
motor. Regardless of where these errors occur, they have the cumulative
effect of causing a deviation from the intended optimal path. It is then
desirable to use the known information about the path to recompute a new
control program to accomplish the mission objectives. This is done by
determining the control function corrections dJ6u as a function of the
state perturbation; i.e., &u = Gu(éx,t); This is a guidance problem in
optimization theory. The guidance relations are now derived using the
MSM.

The MSM assumes that from the local optimality condition
HE = 0 and the strengthened Legendre-Clebsch condition GuTHuUGu >0,
the minimizing control u(t) can be expressed as an explicit function of

the state and Lagrange multiplier variables; i.e.,

u = U(X,)\,t) (54)

Perturbing this expression to first-order gives
Su = Uxéx + Uxﬁk (55)

The generalized Riccati transformation is
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Solving theklast two

dv

dt

where

and T
11

Ll
12

m
13

ﬂ
21

ﬂ
22

tl
23

e e e e > >

e

>

e

K 4+ Ddv + ,Q,dtf + n

DTSX + Fdv + g dt

lTéx + gT dv + s dt

equations simultaneously yields

T &x + w® y + 7
11 12

T 8x + W + 7
22y

21

(de -7)

(da; - ¢)

1ZT T

A(gs™ - D7)

-s_lgTﬁ
12

-1, T
-s (g my4-1)

f

£

13

23

z

Z

+

+

4
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(56)
(57)

(58)

(59)

(60)

Using Equations (59) and (60) to eliminate dv and dtf from Equation

(56) gives

8A

+

(K+Dn + 21m )éx + (Drm
11 21 1

Mr + &7 )z
13 23

+ a1 )
2 22y

(61)
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Substituting this expression into Equation (55) then gives

su = (U + U (R+Dr_ +2an )}éx
x A 11 21

+ U {(Or + &7 + (DOr + 2
7\( 12 22)y ( 13 ﬂzs)z} (62)

This equation represents the linear-feedback control law for continuously
correcting the optimal control program for a given perturbation &x(t) in
the vehicle state. The new control program is then obtained by adding
these corrections to the converged control program. Note that for a
given perturbation &x(t), the coefficients are obtained by integrating
the Riccati variables forward using the initial values corresponding to
the converged solution.

In guidance work it is desirable to know the control corrections
in terms of a known time—dependent matrix and the initial vehicle state

perturbations, i.e.,

su(t) = L(t) (Sx(j:o) (63)

where L(t) is an explicit relationship between the Riccati variables
from the conéérged optimal trajectory. Attempts to yield a relation such
as Equation (63) were unsuccessful. Numerical étudies using the MSM
guidance scheme therefore were conducted with the assumption of a contin-

uously correcting procedure.

An immediate disadvantage is obvious in the guidance scheme
represented by Equation (62). Since values for the converged Riccati
variables are not stored by the MSM except at the initial point,these
variables must again be integrated forward from this initial time re-
gardless of when the perturbation &x(t) occurs. A more detailed dis-

cussion of this problem is contained in the next chapter.



CHAPTER 5

DISCUSSION OF NUMERICAL RESULTS

The modified sweep method algorithm was programmed for the
UNIVAC 1108 digital computer at the Manned Spacecraft Center in Houston,

Texas. The integration schemes used follow.

5.1 Numerical Integration Routines

Fixed Step—-Size Integration. Fixed step—-size integrations were

carried out using an Adams—-Bashforth predictor-corrector procedure with a
Runge-Kutta starter (Lastman and Fowler!®). The Adams predictor had a
discretization error of o(HS), and the Bashforth corrector discretization
error was of o(h®); h is the step-size. The Runge-Kutta starter had a
discretization error of o(h®).. Partial double-precision arithmetic was
used as follows: the values of the dependent variables were carried in
full double precision, but the derivatives were evaluated and stored as
single-~precision numbers. This technique minimized the effect of round-
off error,

Variable Step-Size Integration. Variable step-size integrations

were carried out using a predictor-corrector-starter procedure as mentioned
above. However, the discretization error in all cases was of o(hs).

These integrations were carried out in full double precision (Schwausch33).

5.2 A Brachistochrone Problem

To compare Modified Sweep Method converged results with known

analytical solutions for a problem of sufficient complexity, a class of

b4
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free-final-time Brachistochrone problems was posed as follows.

Minimize the value of the final time te for a particle to fall

along a frictionless path in a constant gravitational field from point 1

to point 2 subject to the constraints

x = V cos u
§ = Vsinu
x(to) = 0.0
y(to) = 1.0
where
V. = 7 2g(y - a)
V2
o
and a=yo——2—g—

The wvariational Hamiltonian is H = V()\x cos u + Ay sin u). Two differ-
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ent cases were solved for the terminal constraint vector Mf :

1 = - =
Mf x(tf) 5.0 0
and M% = =
y(tf) - 8.0 0

The Modified Sweep Hamiltonian and its Partial Derivatives

Using the optimality condition HE = 0 and the strengthened
Legendre~Clebsch condition that SuTHuuﬁu > 0 , the control vector can

be eliminated to yield the following Euler-Lagrange equations

x _ v >‘x _ ~T
. -*KA —H.X
y y
kx]=__1£0____;1

i} Ve 3
y

where
p 2 Y A2 4+ a2
X y

Furthermore, the second partial derivatives required by the perturbation

equations are
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( g ¢ P )
0 -2 (=)}
. Vo
. o
Ax 0 8 (_jﬁ)
L Voo
-2 A A
) y X'y
B o= (1)
AN A3
A A -2
¥y X X

Results

The M% and M% cases were computed using the fixed step-size
integrator mentioned on page 44. For comparison purposes, these two
cases were solved using the Method of Perturbation Functions program,
MPF (see Lewallenl®). A step-size h = 0.01 second was used in all
cases, with the initially assumed values of the unknown Lagrange ﬁulti—

pliers and final time as follows:

(o]

Ax = -0.2368 sec/ft
x; = -0.6095 sec/ft
. tf = 0.5410 sec

The convergence criterion € was specified as 0.1 x 10—8. The correc—-

tion procedure used in all cases was 25%, 50%, 757%, and 100% from the
fourth iteration onward.

Rate of Convergence. TFigures 1 and 2 show plots of the

terminal constraint norms versus time for the Brachistochrone problem.

Both the MPF and MSM results are plotted. Figure 1 shows the error
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norm for the case M% = x(t;) - 5.0. The two methods converge in seven
iterations; however, the MSM consistently shows a smaller error than
the MPF for each iteration. Note that the decrease in the error norm
for the MSM is significantly less than the MPF for the last iterationm.
Figure 2 shows the error norms for the case M% = (x(tf) - 5.0 E
y(tf) - 8.0)T ; the MSM error norm is not always less than the MPF
error norm. However, the error difference is never large. The terminal
stages of iteration reveal the same high rate of convergence as in the
M% case.
The MSM for this problem at its worst took 20%Z less compu-
tational time. However, this figure is not considered significant be~-

cause two unrelated computer programs were used.

Accuracy of Converged Rgsults. The MSM converged solutions

gave six decimal place agreement for both the M% case and the M% case

when they were compared to the known analytical solutions. For the M%
case, the initially guessed multipliers Az and A; were in error with
'the converged values 2247 and 282%, respectively, the initial guess at
the final gime was 2% 1in error. For the M% case, the initial guesses
on the same Ai and A; multipliers were 500%Z and 260%, respectively.
In this case, the initial-guess error for the final time was 14%Z. These
results are tabulated in Table IV.

To summarize, the MSM has exhibited rapid terminal convergence

and reasonable convergence envelopes for the free-final-time Brachisto-

chrone problem.
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TABLE IV

MSM INITIAL-GUESS ERROR RESULTS

1 2
Mf Mf
Converged % Initial Converged % Initial
Values Error . Values Error
A2 -0.0689 244% -0.0357 500%
X
Y -0.1623 282% -0.1726 260%
y )
tf 0.5271 2% 0.6277 14%

The excellent results warranted further applications of the MSM
to more complex problems whose analytical solutions were not known and
which were of current interest to the space program, For these reasoms,

an Apollo three-dimensional reentry problem was chosen.

5.3 Apollo Three-Dimensional Reentry Problem

In the time interval to <t< tf » find the roll angle program
B(t) which can be used to control an Apollo spacecraft so as to minimize

the weighted sum of heating and acceleration effects

t

£ 1
St o2 -

I = [ [ L7+ b7 ; - 4 Aop7v3 ]dt

t
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~

where Ao is a constant weighting parameter. Here, the first—term in the
integrand serves to measure the acceleration effects due to aerodynamic
forces while the second term measures the convective heating experienced
by the spacecraft. This minimization is to be accomplished subject to the

differential equations of motion given as follows

(5] [ V sin vy )
8 V cos v cos A/(R + h) cos A

A V cos vy sin A/(R + h)

v ) G sin v - D

Y (G cos Y/V) + (V cos v/(R + h)} + (L cos B/V)

LAJ {(—V cos y cos A tan A/(R + h)) - ((L sin B/(V cos ¥))

J

The following initial conditions represent the reentry conditions

for a space vehicle on an Apollo~type lunar return mission.

h(t ) (400,000 £t ) (75.757576 mi

B(t,) 0.0° 0.0 rad

B(t,) 0.0° 0.0 rad

V(to) i 35,000 fps i 6.8181818 mi/sec

() -6.5° -0.11344640 rad

kz(to)J k 0.0° J | 0.0 rad J
where

G = -u/(R+h)?

D = pSV2C,/2m



L = pSVC /2m
*
- e—Sh
Y DO
and m = spacecraft mass (assumed constant)

Optimal reentry trajectories were determined for two cases of

terminal conditions

r - -
h(tf) hf
6(t.) - B, CICAREEA
ACt.) - A A(t.) - A
1 = t f 2 _ £ £
Mf _ and Mf )
V(tf) - Vf V(tf) - Vf
Y(tf) - Yg LA(tf) - AfJ
CA(tf) - AfJ

Values for the terminal state represent a typical set of conditions at

drogue parachute deployment for the Apollo space vehicle

’Ef‘ (75,504 ft)
6, 24.1°
;f -0.6°
vl 856 fps
Ye -44.3°‘
A | ~29.4° |

Numerical values for the Apollo parameters were assumed as
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S = 129.3 ft2 = 0.46379993E-05 mi?
m = 204.0 slugs
p, = 0.27E-02 slug/ft3 = 0.39743447E + 09 slug/mi3
B = 0.42E-04 ££ % = 0.2217600E + 00 mi *
A, = 0.24509804E-07 sec/(slug-ft)ijz
= 0.17809708E-05 sec/(slug-mi)
4 = 0.14076519E + 17 ft3/sec? = 0.95629856E + 05 mi3/sec?

= 0.20908800E + 08 ft = 0.39600000E + 04 mi

Figure 3 shows the essential geometrical relationships between
the state variables for the three-dimensional Apollo reentry problem. The
variables chosen to specify the state of the point mass spacecraft were
h = altitude, 6 = longitude, A = létitude, V = speed, vy = angle of at-
tack, and A = heading angle. The following assumptions have been made:
the earth is a nonrotating homogeneous sphere with its center fixed in
interial space. Furthermore, its gravitational potential is characterized

by an inverse-square law and it possesses an exponential atmosphere.

The Modified Sweep Method Reentry Hamiltonian. In Appendix C,

the Apollo reentry optimization problem is restated. The mechanics of
restructuring the problem Hamiltonian by use of local control optimality
and the strengthened Legendre-Clebsch condition are shown. The Hamiltonian
which is optimal with respect to the choice of roll angie B 1is given as

follows:



H = (pSV2 /CZ + G2 /2m) + A o /2y3 4 A ¥ sin v + LC05 X
L D 0 1 (R + h)
[9—‘3§-—A(x - sin D) 4 O sin A +2)) - —
et e ’ > (R + h)?2
AS cos y
. [ A sin vy +
y
- Lo (hcw+ °L /2 3 22 cos?
2m [ 4 D cosy 6 5 Y]

The Euler-Lagrange equations for this problem are then generated
by taking first partial derivatives of H as follows:

: dH ..
X7 oy and Aj = - ij where i,j = 1, ..., 6.

These results, along with the second partial derivatives Hxx’ Hxl and ﬁxx
which serve as coefficients for the matrix Riccati equation are also pre-

sented in Appendix C.

Results. Initial attempts to solve the Apollo three-dimensional
reentry problem encountered some difficulties when the modified sweep
method algorithm was used. Using the system of units ft/lb/sec, certain
elements of the Riccati matrix K grew very large at the initial time.
Because of these large values, the matrix F also became very large at
the initial time. Consequently, when its inverse was used to compute
initial-time corrections, they were so small that the initial values al-
tered only in the seventh decimal place. As a result, the iniﬁial tra-

jectory was essentially duplicated by subsequent sweeps.

55
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THREE-DIMENSIONAL APOLLO REENTRY GEOMETRY
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An attempt to impose arbitrary bounds on these variables was
tried for several bounding orders of magnitude ranging from 0.5 to
1 x 10°, 1In all cases, every element in the Riccati matrix achieved the
bounding value by the third sweep. An attempt was then made to generate
more accuracy by cycling through the evaluation-correction procedure (EC)N
of the fixed-step-size integrator several times. Values were tried for N

ranging from 2 through 9. This effort to prevent the Riccati matrix

from going onto the limiting boundary was unsuccessful.

A scheme which used a scaled fractional part of the corrections
Gko was then attempted, and this did not eliminate the numerical diffi-
culties with the Riccati matrix. The vector Mf was then altered with
respect to size and to choice of terminal state variables, neither of
which was successful. The system of units then was altered to slug/mi/sec,
for which the range of Lagrange multiplier magnitudes became smaller. Al-
tering the unit system was tried after discussion with Williamson39,
whose studies on tﬁe same problem with the MPF revealed a correlation
between the numerical sensitivities of the Lagrange multiplier equations
and the unit system chosen. The choice of slug/mi/sec achieved a more
suitable scaling for the magnitudes of the multipliers; however, this did
not succeed in eliminating the difficulties with the Riccati matrix.

A variable step-size integratof routine was then introduced
which revealed the numerical sensitivity of the Apollo three-dimensional
reentry problem to the single~step error on the UNIVAC 1108. This sensi-

tivity was measured by fixing the final time at te = 437.263 seconds;

the initial values for the state and Lagrange multipliers were defined as
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Xo and Ao as shown in Table V. The state and Lagrange multiplier dif-

ferential equations were then integrated forward from to = 0 seconds to
te. Using the terminal values for the state and Lagrange multipliers,
the process was reinitialized at te and a backward integration carried
out. The values obtained at tO using this procedure were then compared
for agreement with the defined values of X0 and Ao' Four cases were

tested in which the single step error & was bounded:

Case T 1.0 x 10 9< ¢ < 1.0 x 107
Case II 1.0 x 10 %< ¢ < 1.0 x 10707
Case ITIT 1.0 x 10 2< ¢ < 1.0 x 1070
Case IV 1.0 x 10—l4~< e < 1.0 x 10‘11

To numerically integrate forward from the initial to the final time and
reinitialize and integrate backward to reproduce the initial values to

eight decimal places, the single-step error € had to be bounded as

1x107% < ¢ < 1x10

11

-1 . . X
When the error became less than 1 x 10 4, the integration step size

was doubled for the next step. If the error exceeded 1 x 10_11, the
step size was halved; otherwise, the step size remained unchanged. These
results are summarized in Table V where the bar under the digits denotes
deviations from agreement with initialiy assumed values.

Figures 4 through 9 give a particular set of numerical results

for this problem. This set of results was essentially identical for both

set of terminal conditions M% and M% .



ERRMIN
ERRMAX

1-0.72100154

TABLE V

SINGLE-STEP ERROR TOLERANCE

0.71895168 - 02
+ 01
+ 01
+ 01
+ 02

+ 01

0.81929784
0.24206058
0.16453211
0.35760665

Case 1

1.0D-10
1.0D~-07

0.71934619-02
-0.72100154+01
0.81929769+01
0.24207833+01
0.16458225+02
0.35750746+01

0.75766004+02
-0.40744522-06
~0.65481932-06
0.68185440+01
~0.11346347+00
0.41275475-05

INITIAL VECTOR

0
0

0

NUMERICAL RESULTS

Case II

1.0D-12
1.0D-09

0.71895786-02
-0.72100154+01
0.81929783+01
0.24206079+01
0.16453277+02
0.35760666+01

0.75757626+02
~0.13346897-07
-0.13262769-08
0.68181886+01
-0.11344647+00
0.20899670-07

Case III

1.0D-13
1.0D-10

0.71895265-02
-0.72100154+01
0.81929784+01
0.24206063+01
0.16453225402
0.35760665+01

0.75757596+02
~0.15685918-08
-0.18274255-08
0.68181827+01
~0.11344644+00
0.10682438~07

0.75757576 + 02

0.68181818 + 01
-0.11344640 + 00

59

Case IV

1.0D-14
1.0p-11

0.71895178~02
.72100154+01
0.81929784+01
0.24206059+01
0.16453212+02
0.35760665+01

0.75757577+02
.14599980-09
~0.10809805-09
0.68181819+01
-0.11344640+00
0.73654477-09
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Figure &4 shows the altitude and scaled reentry speed histories
that the Apollo spacecraft would follow during optimal reentry for both
the M% and M% cases. TFigure 5 shows the histories for the longi-
tude, latitude, angle of attack and heading angle state variables during
these optimal reentries. These two figures are of interest because they
define the optimal state histories which the Apollo spacecraft should fly
to achieve the specified terminal conditions while minimizing aerodynamic
acceleration and convective heating. Figures 6 and 7 show the lh
and AA multiplier histories, respectively. These are the Lagrange
multipliers associated with the rates of change iﬁ a1titude and latitude.
They are included here to define the trends to be anticipated for the
specified set of initial reentry conditions.

The two Lagrange multipliers which are required to define the
optimal reentry roll profile are shown in Figure 8. This particular fig-
ure shows the AY and AA histories where AY and AA are associated
with the rates of change in the reentry angle and heading angle, respec-
tively. Figure 9 shows the reentry history for the payoff function.
The aerodynamic acceleration and weighted convective heating experienced

by the spacecraft have been piotted to reveal their individual character-
istics. A study of this figure shows that two peaks occur in both space-
craft acceleration and heating during the optimal reentries. The optimal
reentry roll procedures seem to call for a trade—off philosophy between
acceleration and heating experienced by the Apollo spacecraft. The high
peak £n convective heating is initially balanced with a smaller acceler-
ation peak in the vicinity of 100 seconds. This situation is.subsequently
reversed in the vicinity of 400 seconds where the high acceleration peak

is balanced with the smaller heating peak.
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and M2

Figure 10 and 11 show the A, histories for the Ml £

v £
cases, respectively. This is the Lagrange multiplier which is associated
with the rate of change of speed for the Apollo spacecraft. These figures
were included to reveal, for the specified initial reentry conditions, the
sensitivities of this variable to a change in terminal conditions. It is

interesting to note that both histories are similar with the major dif-

ference arising beyond 400 seconds.

Figures 12 and 13 show the optimal reentry roll programs for
the M% and Mf2 cases, respectively. These are the roll profiles that
an astronaut would have to use during reentry from a lunar mission to
minimize aerodynamic acceleration and convective heating while satisfying
the desired terminal constraints on the vehicle state.

In each case, optimal reentry calls for the spacecraft to com-
mence the reentry maneuver with the 1ift vector pointed almost straight
downward. The spacecraft is then quickly rolled such that the lift vector
is pointed almost straight up after 90 seconds. A slower downward roll
of the lift vector is then initiated so that this vector is at a value of
169 degrees by 350 seconds. The lift vector is subsequently rolled up-
ward to approximately 15 degrees by 410 seconds at which time terminal
downward roll procedures differ depending on the specified values for the
final vehicle state. Specifying two less conditions on the final state of

the Apollo spacecraft calls for less terminal roll of the lift vector.

An attempt was made then to obtain a precise evaluation of the
MSM computational characteristics. For comparison purposes, the
three—~dimensional Apollo reentry M% case was chosen. The MSM program

was then altered to assume computational characteristics similar to
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Williamson.'s39 MPF program. Values for the initial Lagrange multipliers
and final time were specified in varying degrees of accuracy ranging from
four to eight decimal places. Both programs were run on the University
of Texas CDC 6600 digital computer using single-precision arithmetic
everywhere except in the variable step-size numerical integrators where
partial double-precision was used. Each integrator had a single-step
error tolerance of 1.0E-10< €< 1.0E-08. The correction procedure re-

quired correcting 100% of the terminal error after each iterationm.

Results of this comparison study are summarized in Table VI. The

TABLE VI
MPF/MSM

Convergence Characteristics

for M% Case of the Apollo Reentry Problem

Significant Time to Converge %Z More Time Number of
Digits for CDC 6600 Required by Corrections
Ao’ te (Seconds) © MSM Required

MPF MSM MPF MSM
8 33 49 49% 1 1
6 66 106 607% 2 2
4 165 207 257 5 4
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MPF program required less time to converge in each case. However, with
decreasing accuracy in the initial guesses for Ao and tf, the MSM
revealed a tendency toward fewer required corrections and more competitive
time-to-converge. Terminal error norms of both the MPF and MSM pro-
grams for the case of four significant digits in Ao and t, are shown
by Figure 14.

No direct computational comparisons with the SSM were avail-
able. McGregor22 used the ‘SSM to converge the three-~dimensional
Apollo reentry problem for the case of terminally specified values for
6, A, and V. This particular case was converged using a fixed step-size
integration routine. However, as was discussed previously, the MSM re-
quired a variable step-size numerical integration scheme to preserve the
numerical integrity of the state and Lagrange multiplier equations. 1In
addition, the MSM failed to cohverge this particular case of the three-
dimensional Apollo reentry problem. This failure is currently under study
by this author. Numerical comparison between the SSM and MPF for this
particular case of the Apollo reentry problem can be found in the study by

Tapley, et al.37

5.4 MSM Guidance Results

The MSM guidance scheme was implemented for the three-dimen-
sional Apollo ;eentry M% case. A 57 perturbation in altitude, speed,
and angle of attack was initiated at t = 0 seconds to study initial
reentry condition perturbation effects. A similar perturbation was initi-

ated at t = 75 seconds to correspond to initial peaks in spacecraft

heating and acceleration. In either case, it was assumed desirable to
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correct so as to satisfy the originally specified terminal conditions. The

guidance scheme then assumed that

y() = z(t) = 0 (t <t =<t

Control corrections reduced to

fu = [Ux +U, (K+Dn  + 5L1r21)]6x

1

(64)

(65)

Numerical results revealed that the MSM guidance scheme failed

to satisfy desired terminal conditions for specified vehicle state pertur-

bations. Investigation revealed that numerical instabilities arising

from attempts to forward-integrate the matrix Riccati equation were re-

sponsible for compromising effective terminal guidance.

to suppress these instabilities is needed to achieve an effective MSM

guidance scheme.

Further study



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

A new second-order variational method (the Modified Sweep
Method) was developed for solving the two-point boundary wvalue problem
of trajectory optimization. If differs from the original Successive
Sweep Method in that the iteration process is now associated with modi-
fying the initial values of the Lagrange multipliers instead of the
control function over the time interval of interest. This approach re-
quires considerably less computer storage and yields the Eulerian control.
The new method was tested successfully on several classes of problems.

The following conclusions were reached about the Modified Sweep Method:

CONCLUSIONS

1. The method has appeal for problems in which knowledge of
the Eulerian control is critical. The MSM yields the Eulerian control
over the entire time interval of interest upon convergence.

2. Significantly less computer storage than the SSM was re-
quired. Only 3n + 2(q+l) quantities were required by the MSM algorithm
to compute the desired corrections from one iteration to the next. This
is a desirable characteristic for larger-dimensional problems and small-
storage computers. |

3. The nﬁmerical integration of a least n+q less variables
than the SSM is required. This feature is desirable because less com-

putation time is required.
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4. Rapid terminal convergence characteristics of second-order
numerical optimization methods is retained by the MSM,

5. The conjugate-point test feature contained in the original
SSM is also retained by the MSM.

6. A numerical comparison of the MSM with the MPF for the
class of free final-time Brachistochrone problems revealed that the MSM
possesses acceptable convergence envelopes and competitive time-to-

converge features.,

RECOMMENDATIONS

1. The basic nature of the generalized Riccati transformation
technique for solving the linear two~point boundary value problem of con-
trol optimization should be studied. It is possible that other equivalent
combinations might possess a better structure for solving the two-point
boundary value problem than the combination presently being used.

2. Sensitivity of the MSM algorithm to classes of problems
should be determined. This recommendation is made because of the method's
failure to converge the three~dimensional Apollo reentry problem when ter-
minal state values are specified for longitude, latitude and speed.

3. The correction procedure used with the MSM should be opti-
mized such that the largest allowable correction is always attempted during
a given iteration. This should be accomplished for the obvious reason of
reducing computational costs by requixing fewer iterations.

4. Properties of the other Riccati transformation variables
and their relations to the reference trajectory should be studied. Cur-

rently, only information about the Jacobi-Mayer conjugate point condition
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and the abnormality condition is being extracted. This information is
contained in only two matrices of the many used by the Riccati transfor-
mation technique.

5. The MSM algorithm should be extended to treat state as
well as control inequality constfaints. The need for this extension is

obvious since most practical problems are subject to such constraints.
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APPENDIX A

THE INHOMOGENEOUS SET OF PERTURBATION EQUATIONS

Let x(t), u(t), and A(t) be functions associated with an
extreme trajectory for the functional to be optimized. With the assump-

tions made in Necessary Conditions, page 12, the following Euler-Lagrange

equations are necessarily satisfied:

X = H

i&,a,i,t) = f(x,u,t) (A.1)
k) T — - —
A= -Hx(x,u,k,t) (A.2)
T v = =
0 = H (X1t (A.3)

where () indicates that the variables are to be evaluated on the ex-
treme trajectory.

Now assume a nearby trajecéory characterized by the 2n+m func-
tions x = x + 6% , u=u+8u, and A =X + 6)A. Substituting x, u,
and )X into Equations (A.l) through (A.3) and expanding into a Taylor
Series to first order about this nearby trajectory, the following equa-

tions are obtained

§x = Hkxsx + quéu (A.4)

S\ = -H 6x - H 6u - H .6\ (A.5)
XX Xu XA

SHY = H_6x + H du + H .6\ (A.6)
u ux uu uA

where the partial derivatives of the Hamiltonian H are evaluated along

the nearby trajectory.
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Making the assumption that the (mxm) matrix H , is non-

singular, the control corrections can be obtained from Equation (A.6) as

su = H L (GHT -H §x-H sx) (A.7)
uu u ux ui

Using this expression to eliminate &u from Equations (A.4) and (A.5)

then gives

§x A B 8x v
= + (A.8)
s3 ¢ -AT|sx -
where
A -1
A = Hlu uuHux + Hlx
A -1
B = HAuHuuHux
¢c & a7ty +1m
XU uu ux XX
v & u wlet
AU uu u
w & m_uwlent
Xu uu U

Equation (A.8) represents the inhomogeneous set of linear perturbation
equations used by second-order variational methods. For computational

purposes, the following is used:
CSHL(t) = -e H(t) 0< e.<1 (A.9)
u uu ’

BOUNDARY CONDITIONS

Boundary conditions for these equations are derived in Appendix

B. They are summarized here as



and

where the vectors

Gk(tf)

o and

T
1

Gx(to) = Gxo = 0

T
(PXX)f fo + fodv + ocfdtf + T

are also defined in Appendix B.

82
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APPENDIX B

FIRST-ORDER PERTURBATION OF TERMINAL CONDITIONS

To allow for changes in the variable final time from iteration
to iteration, the following linear approximation is used throughout this

section. For an appropriate variable; e.g., Vv assume that

f,
dvf = dvf + vf dtf .

The transversality conditions on the terminal values of the La-

grange multipliers are expressed by the condition
= P - A (B'l)

A first-order perturbation of this condition gives

dz. = ( ) dx + (P ) dv + (P ) dt -d)

£ (B.2)

£

Replacing dxf and dkf using the linear approximation stated in the

first paragraph above, and grouping terms yields

DpY
g, = (P ) 6x, + -(va)fdv + —D—E’i Y . dt, - &\, (.3)
Replacing A by use of A= —H: and transposing the ka term to the
left gives
DPT T -
= (P ) 0% +M dv + "DT:"" B |dt. - di (B.4)

The required terminal conditions on the state variables are
given by

Mo = M(xp,t)) = 0 (8.5)
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Similarly, a first-order perturbation in the variables yields

dM, = M & + M.t (B.6)

The transversality condition on the final value of the Hamilton-

ian is given by

o, & e, + H(x,u,)\,t)]tf (8.7)

After using the linear assumptions stated in the first paragraph of this

section, a first-order perturbation in the variables gives

(B.8)

+ [(Ptt + Ht) + (]9tx + Hx)x + Huu + H)\)\]f dtf

Eliminating su using Equation (A.7), ©6A_. using Equation (B.4), and

f £

collecting terms gives

_ _ -1 _ -1
de N [Ptx + Hx HuHuuHux + éﬁ. HuHuuHu)\) PXXL?Xf

+ |p. + (n -mE P | av

tv A u uu ui XV)¢

T
DP

D -1 R 4 T
+ [Dt(Pt + H) + (HA - HuHuuH'uA) ( oe T Hx)Ldtf
+ (mEts)-{n -nm & dz (8.9)

( u uu u)f A u uu ui a3 f '

Substituting X = Hi s grouping terms again, and rewriting giveé
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T -1
de = [a - HuHuu ¢:! Hu}\PXX)]f 6xf
T
+ (B gl | av
Dt u uu ul xXJf
T
¢ DP
D T ""x T T -1
+ D (Pt + H) +x o + x Hx HuHuuHu)\a}f dtf
(=1 T T’ -1
+ \HuHuuéHu - x dip +HH B, dzflf (B.10)
where
T
DP
o 8 (—-5 + HT)
Dt X tf

Manipulating the coefficient for the dtf term, it is possible to rewrite

this coefficient as

12

D (DP T
[Dt (Dt ¥ Q) R

In matrix form, Equations (B.4), (B.6), and (B.1l0) can be written as

-1
t HuHuuHu)\a]f

o

T \r 3 [
Sg (Pxx)f M%f ag §xc T
de = fo 0 Mf dv + 0 (B.11)
dq T + T ﬁT + T Bet T dt T
i R 3 £ T |9 "5
where T
A DPx T
(Xf = FE“ + H A
f
A D [DP
B = BEGE * QL



and

e

e

ne>

e

>

~de
-1

—(H H (B +H.P )]

u uu = ux ud xx” |
—{H i MT]

u uu ur Xjf

T Df -1
—[Zf Dt + HuHuuHuAa]f
HH L sHT) - (:ET T

u uu u u uu u

[

), o,
£
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APPENDIX C

A MODIFIED SWEEP METHOD HAMILTONIAN WITH

FIRST AND SECOND PARTTALS OF APOLLO

3-D REENTRY PROBLEM

Problem Statement

Minimize the real functional

subject to

ﬁ = V sin vy
& = Vv €OS Y cos A
(R + h) cos A
A S A— cos sin A
(R + h) v
V = - —X —— gip Y - g
(R + h)?
y v} cos Y L
Y = - cos Y + —
®R+n)? V (R + h) m
A = - v_ cos y cos Asin A L _sin B
(R + h) cos A m V cos y

and satisfying the end conditions

1
ol

x(0) (a constant vector)

ﬁ(xf,tf) = 0 ( a (qxl) vector ]
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where

th
P = pe
_ 1 2
L = 3 osviC
S 2
D = 3 pSViC)

The variational Hamiltonian is

* *
i = —2—}“— poe"Bhsv2 ScZ+a2 + Aopi/ze—s(hlz)v3 + AV sin y

'V cos ¥ ( cos A -
+ ® + 0 oos A (Az Ae sin A) + (13 sin A + ks) ]
- —F——l 3, sin y + 2, B
(R + h)2| v
1 &h in B
- ﬂpoe—s SV [;\uch—cL ‘(As cos B = A, '2’0%'7)]
Partials of the Apollo 3-D Hamiltonian With
Respect to the Roll Angle
5H 1 -fn 8
= 91 _ = - - : - £€os b _
HB = 38 9 Po® SVCL AS sin B 16 cos y
This implies that
A sin g+ S8B _
5 6 cos ¥



or

6
tan 8 = A cos Y
5
Thus
A
6
sin B = - -
2
i/is + XS cos“ y
and
—AS cos B
cos B =

ifié + Ag cos? y

Sufficiency Condition

% A sin B
= - L  kh ML
HBB = 7m Pot SVCL As cos B
cos Y
We require
HBB > 0 for a local minimum
Thus
_ sin 8
[ AS cos B AG cos y ] < 0
or, using H_, = 0

Requiring - -%— < y < —— yields
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0 < cosy < 1

Therefore, the "+'" sign of the radical must be chosen for optimality in B.

Finally,
sin B = e
OPT VA2 + A2 cos? Y
6 5
—As cos Yy
cos BOPT =

/&g + A% cos? y

The Optimal Hamiltonian With Respect to B

Eliminating sin B and cos B8 then yields

m
I

% - *
Lo e FRev2/ET 102 42 pl/ze-B(h/Z)Vg
2m "o L D oo

+ AIV sin y + V cos v [cos A

(R + h) |cos A (12 - AB sin A)

+ (A3 sin A + AS)] -

* c
- L1 Bh L 27 22 ooa?
om er SV[XHCDV + cos ¥ /16 + As cos‘ y
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First Partials of H With Respect to x and A

The Euler-Lagrange equations for the MSM are obtained from the

first partial derivatives of the Hamiltonian H.

below, where

X

X

These equations are given

. ﬁl = (%% ) and 1i,j = 1, ... 6.
oH % Bh, o /r— B 1/2-B(n/2
o -8 0 sv2/c2 + CZ - 8 A p e"B( )V3
oh L 2 oo
V cos vy cos A . .

(A, - Ag sin A + (A, sin A + A.)
(R + h)2 cos A 2 3 5
Ac cos ¥
5
2u 3 Aq sin y + ——

(R + h) \Y
x Py —Eh CL

A 2 2 2
By e sv[xqch + /xs + 2% cos? v }
oH
39 - O
.0H V cos v {cos A .
— (A, sin A - A))
3A (R + h) [cosz A2 6

~ o} * . %*.
dH _ "o -Bh 5 3 1/2 -8(h/2)_»-
5V m SV CL + CD + 3)\09o e \'

. cos Y cos A
+ A, sin vy + (A, - A_. sin A)
1 (R + h) |C°S A T2 6
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AS cos y
+ (O sin A+ )| + L > >
(R + h) A
1 th L
- om poe S{Z)\“CDV +

Vﬁ% + A% cos? y}
cos y

_ gﬁ. . _V sin y jcos A _
HXS 3y AV cos ¥ ® + B (cos A (Az Ag sin A)
)‘5
+ (AS sin A + As)] - L [Au cos y - i;-sin Y ]
2
(R + h)
A2 sin Y
- f%-poe'shsvc [ & »]
cos? Y X% + cos? Y
. - OH _ Vcosy | _sinA
X, 3A (R + h)

oos A (Az - XG sin A) + AS cos A}

3 = (2E) -
H)\1 = (;A ) = V sin y

i - (aﬁ) - VcosycosA .
12 A, (R + h) cos A
i - (a‘H)= V cos y sin A
'A3 813 (R + h)
H

_ (eB)_ ___w_
Ay 3, B

%
sin v - P e_BhSVZC



ﬁ = (3ﬁ)= Vcos y _ u cos y
)\5 8)\5 (R + h) (R+h)2 v
* A. cos y
- 5
- ﬁ I ShSVCL
/X% + A% cos? v
;I _ [BH)_ _ VcosycosAsind
A dA (R+ h) cos A
6 6 :
*
_ L, B T A6
2m o cos Y '/)‘é + A% cos? v
HM Matrix
0 o o o0 0 0
O 0 0-0 0 O
~ 0 0 0 0 0 0
H =
M o 0 0 0 0 0
0 0 0 0 a b
0 0 0 0 b CJ
where
*h
p c sve ®
= el L 2
a = =3 A% cos Y
. ( )3/2 6
2 2 2
Ag + AL cos” y
*h
o, c sve®
b = +o ' A X cos ¥
2m 32 56
)\g + A2 cos? y
*
p c, sve BR
e = -9 L 2
2m cos Y



o

A%

ol

AM%g

== 3]

A%3

o e

MEy

e

MEs

e

‘%6

e

Ale

oo

Ao%s

a I

Ap%3

4

274

~

H Matrix
AX
0
0
0
sin vy
V cos vy
0
\'i cos A
- c Y A
(R + h)2 cos
0
) ‘cos Yy cos A sin A
+
(R +h) cos? A

cos Y cos A

(R + h) cos A
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il

\'] sin y cos A
(R + h) cos A

\'i cos Yy sin A
(R + h) cos A

\' .
- ——-—-———zcosys:LnA
(R +h)
0
0
cos ,
® +h) Sl‘fA
S A— in in A
®+ D) sin v s
—v__. A
®+ 1) 0s Yy cos
p %
% -
2u siny+8§%SV2CDe éh
(R + h)
0
0
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P fh
o —
- SVCDe
- i 5 COS Y
(R +h)
0
_V cos v + 2u cos Yy
(R + h)? (R + h)3 v
o * A. CcOS Y
* "o -B8h 5
B >m CLSVe V/z - .
AG + AS cos”< y
0
0
. .
cos y i cos Y Po ~Bh Ag cos ¥
+ - — C,.Se
2m L

R+1h) @®+h)?2 v? /Ag + A§ cos? y

om CLSVe

*
BhA T
5

_y sinyY,+ U sin vy _

(R+h) (@®+h)?2 v 2



where

where

)\g sin v
Tz = -
(XZ + A2 cos? y)3/.2
6
fn
Vcosy cos A sin A + ’é p_o Cste >‘6
(R + h)? cos A 2m cos vy JAS + )\é cos? y
0
_ \' cos y cos A
(R + h) cos? A
fn
__Ccosy cos A sin A _ f_g_ € 5e ‘6
(R + h) cos A 2m cos Y ﬁg T >‘§ cos? v
o %
\ sin Yy cos A sin A _ "o -gh
(R + h) cos A 2m Cste T3
\' cos Yy sin A sin A
(R +h) cos A
sin y (A% + 2A§ coszy)
T
3

, :
cos™ vy ()\2 + 212 cos? Y)3/2

6 5
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X

1%4

%5 . _*
B & p1/2e B(h/2)v3

2V cos y | cos A
(R + h)3 cos A

* C
%, Ps -

2 _0 ~kh L A2 122 cog?
B2 e sv[xchv o5 /&6 + 22 cos? y
0

V cos v |cos A (v sin A - A )
(R +h)2 |cos2 A 2 6

% *
%% Bhgr Tz o 3% 1/2,-B/2)y
m L D 2 ""oo0

cos Y |C0SA 3 _ ) ginA) + (A sin A+ A )
(R +h)2 {cos A 2 6 3 5
2u As cos Y

(R + h)3 v2

(A - X sinA) + (A sin A+ 1))
2 6 3 5
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xPo _Bn %
Bame S [0V + o

/&g + Ag cos? y

V sin vy cos A (A -2 sinA) + (A sin A+ 1)
®+m)2 {54 T2 ’ i

A. sin vy
5
2y A cos Yy —

. po -gh X% sin v
B = SVe " C

2m L

cos? v /&g + A% cos? y

_Vcos y |_sin i (A =X sinA) + 2 cos A

(R + n)2| ©°° 2 6 3
0
0
0
0



H

X3¥%3

X X

374

X3¥g

*3%g

100

_V cos v cos A
(R + h)2 | cos? A

(O sin A - 1)
2 6

V cos y |cos A
(R + h)

A (1 + sin? A) - 22 sin A)
cos3d A 2 6

3

.
cos Y cos A

® + ) (A sin A - AG)

cos2 A 2

\ J

(A sin A= 1)
cos? A 6

\Y /

_V sin vy | cos A
(R +h)

_Vcos y sin A

(A sin A - 1)
R + 1) cos? A 2 6
YCcZ + C2 % *
% - %~ -
-Bp SV L D e eh _ 3 BA p1/2V2e B(h/2)
0 m 2 0 0 .

cos Y |(cos A

(Ay = Xg sin A) + (A3 sin A + AS)

(R + h)2 cos A
2u AS cos Yy
(R + h)3 v2
#h c
*pSe L AT 2 2
8 0 ZXACDV + cos v AG + ks cosc y

2m



0
cos Y cos A (A sin A - 1)
(R + ) cos? A 2 6
oL+ e by ~ 1/2. -B(h/2)
p S e + 6) p Ve
o n o o
2 AS cos Y po th
B - -2 Se [x CD]
(R + h)2 y3 m 4
A cos y - -SimY jcos A (A, = A_ sin A)
1 Y (R + h) cos A 2 6
0 AS sin vy

(X331n A+ Xs)] -

S

A
6

(R +h)2 V2

2

sin vy

cos? Y /&% + Ag cos? Y

in A

cos 1_{_

~ (R + h)

V sin vy

(o4

(x

os A 2

cos A O

(R + h)?

2u
(R + h)3

|

cos A

5

{Aq cos Yy -

Ae

- A

A

6

5

sin A) + A3 cos A)

sin A) + (XS sin A + AS)}

sin v ]

v
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HX x - 0
572
e V sin vy [ cos A ]
H = - (A, sin A - 1)
X5Xq (R + h) cos? A 2 6
B = )\, cos y - sin Y cos A A, = A, sin A)
XsX, 1 Y (R +h) cos A V2 6
] " Ag siny
+ (A sin A + As) -
(R + h)? v2
/ * 2 .
_ Egse_shc 16 sin vy
2m L
cos? Y /&% + A% cos? Y
4 - : _Vcos y | cos A _ .
HXSXS = -\V sin vy ® + 1) [ cos A (O, = X, sin A)
As cos Yy
U .
+ (ks sin A + AS)] + —— [Xu sin vy + ~——————-}
(R + h)2
o *
O gye Bh
o Sve CLTl+

where




« (L + 2 tan? y) + A% sin? v ]

_V siny [_ sin A

&+ cos A (Az - AG sin A) + As cos A]

_Vcos y [_ sin A

= (A, — A, 8in A) + A_ cos A ]
(R + h)2 cos A 2 3

6

0
V cos vy ([ sin A
- (A, sin A - A )}
6
® +0) | cos2 A Z
cos vy '_ sin A _
@® + 1) | cos A (12 Ag sin A) + Ay cos A}

V sin y [_ sin A
6

" ® D e (Az - A, sin A) + As cos A]

V cos y {_ cos A

® + ) o5 A (Xz - Ae sin A) - XS sin A}
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